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A tunneling experiment is proposed to verify the recently predicted band structure in the

excitation spectrum of the laminar intermediate state.

The theory shows that the energy

bands are reflected by rapid oscillations of the differential tunneling conductance for small

voltages of the order of the maximum value of the pair potential.

In weak magnetic fields

(H~0.1H,) which produce normal regions of some 10~ cm, the distance between two oscil-

lation peaks is of the order of 107% to 106 V.

I. INTRODUCTION

Recently van Gelder calculated the excitation
spectrum of a superconductor where the pair poten-
tial A(f-’) is a one-dimensional periodic step func-
tion! (Kronig model). He found that the eigenstates
of the quasiparticle excitations are arranged in en-
ergy bands as is to be expected from the periodicity
of the pair potential. Applying the Wentzel-
Kramers-Brillouin-Jeffreys (WKBJ) method of
solving the Bogoliubov equations of Bardeen et al. 2
to the laminar intermediate state with a periodic,
but otherwise arbitrary, pair potential, the author
obtained the general eigenvalue equations for the
excitation energies withtwo variational parameters 3
These equations reduce to van Gelder’s result in
the limit of the Kronig model.

Although the existence of energy bands in the in-
termediate state is well established theoretically,
one may wonder if they can be verified experi-
mentally. Owing to the shallowness of the pair po-
tential wells and because of the macroscopic size
of the normal and superconducting regions, a typ-
ical periodicity interval has a length of about 10-!
cm, %5 the bandwidths as calculated in Sec. II are
very small. A forbidden band measures some 10-¢
eV for weak magnetic fields. Therefore, the differ-
ent band sequences for different values of quasi-
particle momenta K.I parallel to the phase boundaries
fill in each other’s gaps, and the band structure
will be detected only by an experiment which singles
out a well-defined band sequence. As has been
suggested, ® such an experiment may be tunneling
into the intermediate state through an insulating
barrier parallel to the normal superconducting phase
boundaries (see Fig. 1). The tunneling probability
is appreciable only for electrons with Fermi mo-
mentum R perpendicular to the barrier which face
an allowed energy band with &, = 0 in the supercon-
ductor. Because of the narrowness of the low-lying
energy bands, the differential tunneling conductance
calculated in Sec. III oscillates rapidly as a function
of the applied bias voltage. In Sec. IV we discuss
some of the experimental aspects to be considered

3

in a measurement of the effect.
II. ENERGY BANDS

Since neither the existence of the energy bands
nor the order of magnitude of their width depend
upon the detailed form of the periodic pair poten-
tial, we may choose the simple Kronig model for
a discussion of tunneling. In this model the eigen-
value equationsl’ % are in reduced units for energies,
measured from the Fermi surface p,

E/A=€<1:

cos [(k, -k c0s8)2D] = cos(ac /cosd)
x cosh[b(1 —€?)!/2/cosb)]
- [e/(1 —€?' ¥ sin(ae/cosh)
x sinh[b(1 —€?) 2/cos]; (2.1a)
E/A=e>1:
cos[(k, -k pcos6)2D]
= cos [a€ /cosf +b(€2 —1)* #/cosb]
- [e/(€2=1)'/2 - 1] sin(ae /cosh)
x sinh[b(e2-1)'/%/cos6] . (2.1b)

Equation (2.1b) can be obtained from Eq. (2.1a) by
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FIG. 1. Tunneling junction between a normal metal
and a superconductor in the intermediate state. A few
of the very narrow energy bands for E<A are indicated
as energy levels.
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changing € <1 into € >1. The symbols used in (2.1)
have the following meaning: A is the maximum value
of the pair potential in the superconducting regions;
k, is the component normal to the phase boundaries
of the propagation vector of the quasiparticle Bloch
wave

Up(F) = xg (2) e e TN 3o (24 2D) =¥z (2);  (2.2)

2D is the periodicity of the laminar intermediate-
state structure (see Fig. 1); cos6 is defined by
kE cos?0/2m =y —kZ/2m; thus, for quasiparticles
at the Fermi surface, 6 is the angle of incidence
on the phase boundary measured against the z axis;
a=(2m/kp)ADH/H, = (2D/ 1£) H/H, measures the
width of the normal regions 2a,=2DH/H, relative
to the coherence length £=kp/mnA; =1,
b=(2m/kp)AD(1 ~H/H,)= (2D/71£)(1 - H/H,) measures
the width 2(D -a ) of the superconducting regions;
and H, is the critical magnetic field.

In the case €>1, or if H> H, so that b=0, Egs.
(2.1) give

(ky —kp cos6)2D + 2nn=2mDE /by cosb,
n=any integer
E,=(kp/m) cosb[(ky +2nm/2D) —kyp cosb] . (2.3)

For x such that &, + 2u7/2D is the z component of a
wave vector not far from the Fermi surface so that

Ak= |k + 207/2D —kp cos| <kg

E,= Akkp cost/m~ kE /2m + (kp cosO+ Ak)Z/2m — u

is the continuous normal quasiparticle spectrum
for E, <u. We can count the number of states be-
longing to different values of &, by applying periodic
boundary conditions at the limits of the sample to
the Bloch wave (2.2). If the sample length in z
direction is L, then all

(2.4)

are the discrete-allowed values of 2,. As one
knows from solid-state band theory, in the reduced
zone scheme, the maximum value of k2, at which
occurs Bragg reflection in the periodic structure is
2w divided by the periodicity interval. Thus,

(By)max = 27/2D

and in each band there are M =L /2D different states;
1<p<M; L=2D if H> H,. The index » labels the
bands which in the case of E> A, H<H,, according
to Eq. (2.3), join each other smoothly as p varies
between 1 and M.

Because of the macroscopic size of the normal
and superconducting layers the constants a and b
are rather large numbers. From the theory of
Landau and Lifshitz one obtains® the lengths 2D
~6x10"%2cm and 2ay~4x10"% cm for H/H,=0.17,
Powder pattern pictures of Al for H=0.08H, give

B, =p2n/L, p=integer
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2D~ 3x10~! cm (this number is a crude estimate

of the author taken from Faber’s pictures® as quoted
by Livingston and Desorbo®) and 2ay~ 2.4x102 cm;
in that case a=80 and 5=900. As long as H is not
very close to H,, b will always be a large number.
Consequently, to a very good approximation we may
write Eq. (2.1a) for E <A as

cos[(k, —kpcos6)2D]

eb(l-ez)”z/coss ) ae
= W s1n<n(€) - COSG) s (2. 5)

where
n(€)=arccose .

Because of the extremely large amplitude
etU- DV o (5 5) can be satisfied only in a
very narrow range of energies € around the values
which make

sin[7(€) —a€/cos6]=0 .

Thus, for all practical purposes we may consider
the energy bands for E < A as sharp levels satisfying
the eigenvalue equation

(2.6)

Equation (2.6) is exactly the same eigenvalue
equation as for the energy spectrum of an isolated
normal layer in an infinite superconductor® ; ap-
proximate solutions of it are given in Eq. (3. 16).
The only difference is the M -fold degeneracy cor-
responding to the M possible %, values in each band.

For energies E > A the second term on the right-
hand side of Eq. (2, 1b) produces the band gaps.

Its amplitude €/(€%—1)'/2 -1 decreases hyperbole-
like from 6.16 for € =1.01 over 0.16 for €=2to 0
for large €. Thus, the continuous spectrum (2. 3)
should begin for energies of about the order of 24,
whereas the lowest states between A and 2A still
form very narrow bands due to the rapid oscillations
of the right-hand side of Eq. (2.1b).

arccos€ — a€/cosf=nm .

III. TUNNELING
The tunneling probability per unit time w for a
net current flow from the left side of the insulating
layer into the intermediate state on the right (see
Fig. 1) is given by® °®

T
w r L 2 ke e g

ZIILO m kl'EH K k’ﬂ

xC(d,E") o(E(K)-E'(K")
x [fER) -V)-f(E'ED)], (38.1)

K=k, +k,, and kK’=k!+K/ are the quasiparticle wave
vectors on the left and the right of the tunneling
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barrier of thickness ap; E and E’ are the corre-
sponding energies; %, is the value of &, of Eq. (2.4)
in the extended zone scheme; k= [2m(U, - V) -k2]"/?,
U, being the average height of the potential in the
barrier and V the applied bias voltage times elec-
tron charge ¢; and f(E) is the Fermi distribution
function. The factor C(d, E’) has been introduced
in order to take into account the reduction of the
amplitude of the tunneling wave function by the de-
crease of the amplitude of the periodic part x;(z)
of the quasiparticle wave function (2. 2) outside the
normal regions® for E<A; d is the distance from
the tunneling barrier to the nearest normal region.
After summing over k! we can change the sum
over k, into an integral of the density p,, of those
states on the right in which the particles move nor-
mal to the phase boundaries:

z ~ [aE' o, (E') .

-
The sum over k,, k, becomes

-

kg Ky

f k2dksinédody , (3.2)

Yy
(2n)°
where the polar axis is in z direction. The normal
metal of volume v, on the left has the energy spec-
trum

ER) =k¥/2m —p+V . (3.3)
Therefore we have

k2dk = m[2m(E +p - V)] 2dE (3.4)
and

kag~ o +B(1 —cosb) , (3.5)
with

a= ag[2m(Uy -E - )]V 3,

(3.6)

B=ag[2m/(Uy-E - )" ¥ E+u-V) .

For a barrier thickness of az~ 20 A, 28~ 20 is a
typical value. 1°

Performing the integral over E’ and using Egs.
(3.3)—(3.86) we obtain

w=(vo/4TLL) [ dE (E + 1 = V)kp e~ 25 C(d, E)

X[ f(E-V) - f(E)]
X fol P (E, 6) e 21000 00520 | (3, 7)

We have approximated %, by % » because we are only
interested in states near the Fermi surface among
which only those have an appreciable tunneling prob-
ability whose momentum perpendicular to the in-
sulating barrier is very close to the Fermi momen-
tum k.

The one-dimensional density of states p,, is
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M
Pu(E, 0)= 2 Zl o(E -—E,,,,(B)) ’
n p=

(3.8)

where E, ,(0) is a solution of Eqs. (2.1); it is the
energy associated with the wave vectors 2,=n271/
2D +p2n/L and k, =k sind in the nth band.
Because of the large value of 283 only values of
6 very close to zero contribute to (3.7) and
d cos®= 2d cosf . (3.9)
In Eq. (3.7) we change the integration over cosé
into one over E, ,(6) and obtain with (3.8) and (3. 9)

1
I(e)= fo P, (E, 0) e 21-c00g co5%

~2 [ aE, ,,(e)(dcose pu(E, 6) e~ B1mcos®
»Y\aE,,

:zzi (i?l%§9_> e-Bl1-8®] (3 10)

For E < A, the sum in Eq. (3.10) can be evaluated.
Equation (2.6) gives

cosb(E)= ae/ [n(€) +nn] ,

so that
dcos® cosé cos?
dE ~E ' aE(1-E%/AR? (3.11)
For 6 <1, we may approximate
cosf~ 2-1/cos6=2- [n(€) +nm]/ac. (3.12)

The sum over p yields the degeneracy factor M,
and we obtain

My 1 2 - [1/(a€)?(n+nm)?
19=ca E)N(z ae (M) = A a7 >

-1)] . (3.13)

N is the smallest integer above [ze —7(€)]/7 so that
for > N, 1/cosf —1 20. The large values of n, for
which the approximation (3.12) is not valid, con-
tribute negligibly to the sum (3.13). This expres-
sion consists of a geometric series of sum S and
its first and second derivatives with respect to 5;

(3.14)
For a given € there exists a value €y > € such that
N=laey —n(ey)] /7. (3.15)

This is Eq. (2.6) for 6=0. Because of the magni-
tude of a, the approximation 7(ey)=arccosey~37
— €y gives the eigenvalues

ey~ (N+3)1/(a+1)

ae

y exp[ _ 23<7]+n17

S :e(-zB/ae)(n+N1r)/(1 _e(-ZB/ae)n') .

(3.16)

with a tolerable error except for €y~ 1. Thus, the
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exponent in S is

- 5
26 "“Z;N"  9p 1) na(:N)HKN ~ zg(m = +1>,

(3.17)
|

where

leo

be=ey—€, ry=1+1/a(l-e€k)/2 (3.18)

for € y1 <€ < €y. We obtain as the final result

1(e<1)=-2£u— e-%%we 1+ L - T 1+ 2 1+ T
€A 1-e7ae ) 27 (1 -T2 7 ge(1 - B %) a(l -€)72\ "7 ae(1 —eF 9

0
—VN—-S[1+

There is no simple analytic way of calculating
I(e >1), but one may reason that for the lowest
states A< E <2A, I(e >1) should behave qualitatively
like I(€ <1). The most important term in Eq. (3.19)
is e “%78%/¢ which produces sharp peaks for tunnel-
ing into the levels (bands) with k! =k, =0, because
6€ =0 for cosf= 1. Since the states with energies
1 <€ <2 are expected still to form very narrow well-
separated bands for E{ =0, the probability of tun-
neling into them should vary similarly to I(€ <1).

exp{- 2 Brn%‘ﬁ}

N=

0.9
0.8+

0.7

06

0.51

04

0.3

] {av)
02 \

0.1

a

1

1 -e)i7?

"'6)

(2+7N 95— + E(—l—‘:zi.[g,m)ﬂ} . (8.19)

The net tunneling current from the normal metal
into the intermediate state is

jn-s =(6/A)’Ll) )

where A is the area of the interface between the

two samples.

is
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The differential tunneling conductance

FIG. 2. Leading term & %7N°® v/v
of the differential tunneling conductance
of Eq. (3.20) vs the reduced bias vol-
tage v =V/A at T=0°K, =20, and a
=80; (6v)y is given by Eq. (4.1).
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At very low temperatures, T= 0, the Fermi func-
tion f(E-V)in Eq. (3.7) may be treated as a step
function with the 6 function 6(E — V) as its deriva-
tive. Then, integration over E in Eq. (3.7) yields

d

k - |4
R =2EE 0(d, V) e M (), v=

anL A (3.20)
Figure 2 shows the variation of the leading term
e"®W®/v of I(y <1) of Eq. (3.19) as a function of the
reduced bias voltage v.

IV. DISCUSSION

The well-pronounced rapid oscillations of the dif-
ferential tunneling conductance for V/A<1, as
shown in Fig. 2, are expected to continue into the
range A<V <2A. They reflect the band structure
in the energy spectrum of the quasiparticles moving
normal to the phase boundaries. Finite tempera-
tures will soften the curve and round off the peaks.

The laminar periodic structure of the intermedi-
ate state responsible for the effect can be produced
by a magnetic field H perpendicular to a thin super-
conducting slab with a demagnetizing factor D*=1,
Alternatively, one may also apply a slanting field
to a disk specimen.’ !! The distance in volts 6V /e
between two oscillation peaks is given by Eq. (3.16)
with €, being replaced by vy =V /A,
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vy~ (N+3)1/(a+1),
(4.1)
(80)y = vysy — vy~ 1/la +1)~ 7%H,/2DH .

Compared to the width of the normal regions,
2ay=2DH/H,, the periodicity 2D varies little with
the magnetic field. It is always of the order of
10-! cm whereas the coherence length is £~ 10~*
cm. Thus, for magnetic fields H= 0. 1H, one has
10-! > (8v)y > 1072 s0 that the voltage difference
between the Nth and the (N + 1)th peak is of the order
of 107° to 10-% V (A= 107* eV).

A complication arises for the states with E<A
because of the factor C(d, V). It will heavily damp
the tunneling current for V<A, if one cannot bring
a normal region within a distance d= £ from the
tunneling barrier. To facilitate this one could in-
crease the magnetic field so that the width of the
superconducting regions decreases. As an unwanted
consequence the oscillation periods (6v), would de-
crease, because a grows.

However, the smallness of (GU)N in itself should
not pose any experimental difficulty, since one now
has achieved sensitivities of 10~!°* V in voltage
measurements.'? The main problem in making
visible the band structure of the intermediate state
will lie in the temperature smearing of the oscilla-
tions of the tunneling conductance. This may re-
quire measurements of the second derivative d%v/
dj2.

*On leave of absence from the Institut fiir Theoretische
Physik der Universitit Frankfurt am Main, Germany.
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